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1. Introduction

To aid in understanding the different topics discussed in the current Lecture Series and
to provide background material for interested participants who may not have specialized
training in this field, a brief summary of the fundamental attributes of hypersonic flows
is given. Many of the topics that are introduced in this section will be elaborated further
in contributions related to specific subjects related to sustained hypersonic flight. The
differences between the thermal and chemical aspects of hypersonic flow and supersonic
flow are therefore highlighted. The age of some of the figures used in the subsequent
discussion reflect the fact that the problems of hypersonic flight are not newly discovered!

Fig. 1.1 Flight trajectories for different hypersonic vehicles comparing sustained atmo-
spheric flight with re-entry.

The hypersonic flight regime includes atmospheric entry and re-entry, ground testing,
and flight for both powered and unpowered vehicles. In the present Lecture Series, the
main interest is on sustained and controlled hypersonic flight, whether for military or
civil transport application. Even though it is not currently certified for flight, there is
one operational hypersonic vehicle: the space shuttle of NASA. At least 20 years before
the development of the shuttle a significant activity in hypersonic flight research was
conducted by the US Air Force in their X-15 program. This vehicle has reached a flight
Mach number of 6.7 on its final flight, which also used to test a hypersonic ramjet engine.
Direct shock impingement on the pylon holding a dummy engine caused severe heating
and structural damage, and this was one of many lessons learned from the program.
Owing to the design of the X-15, it was not capable of long-duration powered flight, but
it provided a great deal of information on technical problems that still remain a serious
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obstacle to the development of new hypersonic vehicles. It is still astonishing to look
back on the rapid development of high speed flight in the years after the second World
War. The challenge is to build on this experience, and to accomplish the development
of a new generation of flight vehicles. To put sustained hypersonic flight in context,
current and proposed hypersonic vehicle trajectories are compared in Fig. 1.1.

Although un-powered hypersonic vehicles are not the topic of the present Lecture Series
it is important to note that there have been many more successful developments of these
types of vehicle, predominantly in the reentry of manned and unmanned spacecraft of
Russian, American, and European origin into earths atmosphere. For example, the
Apollo reentry conditions were 53 km altitude, 11 km/s velocity, 270 K temperature,
and speed of sound 338 m/s which gave a reentry Mach number of M = 32.5. There have
also been a number of missions to other planets (more vehicles going to these planets
than have been developed for sustained hypersonic flight within the atmosphere) and
the entry speeds into those atmospheres have been even greater. A recent, noteworthy
example of this was the Galileo probe to Jupiter that was designed to enter the Jovian
atmosphere at 60 km/s at an altitude of 1000 km. At this altitude, the temperature
is approximately 800 K, and the atmosphere was assumed to consist of H2 and He at
a mixture of (89:11) by mass. Therefore, the entry Mach number was about 28 for
this mission. Even though the entry speed was greater than that of the Apollo re-
entry, the Mach number is lower owing to the greater value of the sound speed in the
hydrogen-helium atmosphere.

Clearly, Mach number is not the only parameter that must be considered for hyper-
sonic flight; in fact, it is often only of secondary importance. In Earth’s atmosphere
for example, the temperature of the outer atmosphere is quite low, so the sound speed
is lower than at sea level and higher Mach numbers can be achieved there at lower
speeds. A better measure is the speed itself, since it can also give an indication of the
kinetic energy involved in the trajectory. For hypersonic craft, the flight enthalpy can
usually be estimated very quickly from the speed as h = u2/2. As will be discussed
later, the amount of aerothermodynamic heating that the vehicle must deal with is lin-
early dependent on the kinetic energy of the vehicle. This is a very important aspect
of hypersonic flight through planetary atmospheres. The vehicle encounters such severe
heating that a significant part of the design and development effort is concerned with
providing sufficient protection of the payload without using all payload capacity for
doing this! Other general characteristics of hypersonic flows are that molecules behind
a high-velocity shock wave become vibrationally excited, partially or completely dis-
sociated depending on their bond energy, and, at very high speeds, partially ionized.
These aspects of hypersonic flow are typically called “real gas” effects. To clarify what
is meant by ”real-gas effects”, it is useful to bear in mind the following definitions:

Thermally Perfect Gas: A thermally perfect gas is one that obeys the ideal gas
equation of state,

p = ρRT .

From compressible flow theory, this relationship implies that internal energy and
enthalpy depend only on temperature.
Calorically Perfect Gas: A calorically perfect gas has constant values of specific heat,
independent of temperature.
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Perfect, or Ideal, Gas: This designation refers to a gas that is both thermally and
calorically perfect.
Thermal Equilibrium: A single temperature can be used to describe the different
molecular internal energy modes (which are described in detail below). This single
temperature describes the energy modes of all molecules and it is the same as the
temperature of the surroundings.
Chemical Equilibrium: All chemical reactions are in balance and the system does not
spontaneously undergo any change in chemical composition, no matter how slow. For
this situation the distribution of species is uniquely described by two thermodynamic
variables, such as density and temperature.

Note that a “real gas” is not defined, since it is used by fluid dynamicists to describe
all of the situations that are not perfect. However, it will be shown later that the most
important real, or imperfect gas effects for hypersonic flight in earth atmosphere are
caloric.

As in other flow regimes, non-dimensional parameters are used to describe hypersonic
flow. Most of these paramaters are encountered in other flow domains, including sub-
sonic and supersonic flow, but they are summarized here for convenience:
1. Reynolds, Re = V L/ν. This can be taken as a measure of the viscous flow time over

the mean flow time.
2. Mach, M = V/a. This is a measure of the flow speed relative to the acoustic propa-

gation speed.
3. Knudsen, Kn = λ/L(= M/Re). This an indication of the collision path length

relative to a flow scale
4. Prandtl, Pr = ν/κ. A measure of the thermal diffusion time relative to the viscous

diffusion time.
5. Schmidt, Sc = ν/D. This is an indication of the species diffusion time relative to the

viscous diffusion time.
6. Eckert, E = u2/h. Indicates the relative magnitudes of kinetic and thermal energy

for the flow.
7. Damkohler, Da = τf/τc. This dimensionless parameter is the ratio of the character-

istic flow time (such as a residence time) to a characteristic chemical reaction time.
When it is very large, the chemical reactions can be complete, and the flow will likely
be in chemical equilibrium. When it is very small, the chemical reactions will not
be complete and the flow chemistry is considered to be frozen. For hypersonic flow,
in contrast to other flow regimes, the Damkohler number plays an important role,
determining whether or not the flow is in equilibrium.

To relate the discussion of thermodynamic and gasdynamic considerations to applica-
tions of interest it is useful to consider first general high-temperature gas effects that
are encountered in the hypersonic flight of a typical vehicle, as illustrated in Fig. 1.2
(it should be noted that apart from compressibility, none of the attributes mentioned
below are found in the supersonic flow regime.

Caloric and Chemical Effects: The atmospheric composition behind a normal shock
ahead of a hypersonic vehicle will differ greatly from the atmosphere ahead of the
shock. Diatomic molecules will be vibrationally excited and dissociated to some extent,
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and the resulting atoms and remaining molecules can be partially ionized. Thus, for the
remaining post-shock molecules, the assumption that they behave as calorically perfect
gases is no longer valid. Within a vehicle boundary layer, there is sufficient viscous
dissipation to also affect the stream chemistry and this can lead to chemically reacting
boundary layers. As specific heats are no longer constant owing to vibrational excitation
and chemical reaction, their ratio γ = cp/cv is also no longer constant, but also depends
on the temperature. For air, this begins at around 800 K.

Fig. 1.2 Features of hypersonic flow around a blunt-nosed vehicle.

Fig. 1.3 Post shock temperature of a re-entry vehicle at 52 km and 1 atm pressure.

The amount of energy driving chemical reactions is significant. As an example, consider
Fig 1.3, which shows the shock-layer temperature as a function of re-entry velocity at
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an altitude of 52 km. The line to the left is the temperature of a calorically perfect gas.
Specific heat is constant and the kinetic energy is simply converted into thermal energy
assuming equilibrium. On the right is the equilibrium temperature for a chemically
reacting gas. Some of the kinetic energy is converted into chemical energy, thereby
reducing the post-shock temperature. Depending on the material that comprises the
vehicle thermal protection system, the atomic flux to the surface can result in significant
extra heating through the mechanism of surface-catalyzed recombination (which releases
energy as heat on the surface).

Aerodynamic Forces: Another important aspect of hypersonic flight is that the variation
in the ratio of specific heats, γ, can significantly affect the pressure distribution over a
vehicle or its control surfaces. This is because γ, which is also the isentropic exponent,
directly influences the rate of expansion or compression of the flow. This can manifest
itself in the setting of control surface angles, or even in the trim angle of attack for a
vehicle, which can be larger than that predicted for the perfect gas value of γ by 2 to 4
degrees. This was actually observed during the first Shuttle reentry. A calculation had
been done of the pressure distribution along the windward side of the vehicle for a non-
reacting, perfect gas boundary layer (γ = 1.4) and for a chemically reacting boundary
layer. The calculations are shown in Fig. 1.4, and they look very similar. However, we
can see a small but consistent difference in pressure values that are slightly higher for the
forward region and lower in the aft region for the reacting case. When integrated over
the vehicle surface, this produces a net moment that provided additional pitch-up to
the Shuttle nose and required manual control to override. Note that other explanations
have also been given for this, which illustrates how difficult it is to isolate interacting
physical phenomena.

Fig. 1.4 Windward side surface pressure distribution for shuttle for ideal vs. chemically
reacting gas.[3]

Plasma Effects: For air at 1 atm pressure, oxygen dissociation begins near 2000 K and is
complete at about 4000 K. Nitrogen dissociation begins at about 4000 K and is complete
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near 9000 K. At higher post-shock temperatures, ionization becomes important. In a
partially ionized flow, the free electrons absorb and reflect electromagnetic radiation,
usually in the frequency band of communication systems. In addition, at some level of
ionization, the flow will behave quite differently than a weakly-ionized or neutral flow,
since the interatomic forces will have a strong electrical interaction component, which
will lead to differences in transport properties.

Viscous and Rarefaction Effects: Finally, for very high speeds at low density, which
might correspond to a high atmospheric altitude, the mean free path, which is the
average distance that a molecule or atom travels between collisions with its neighbors,
can be large than a characteristic length of the vehicle. This effect is represented by the
Knudsen number λ/L, and we can see from the figure below that when the mean free
path is too large, and Kn approaches unity, then the familiar Navier-Stokes equations
can no longer be closed. Another approach to modeling the flow must be used. The
viscous interaction parameter,

V̄ ′
∞ = M∞

√

C ′

∞√
Re∞L

,

where C ′

∞
= (µ∞T

′)/(µ′T∞) is the Chapman-Rubesin viscosity coefficient based on
reference temperature conditions. The variation of this parameter for a Shuttle re-entry
is shown in Fig. 1.5, and the regimes where an inviscid approach to flow analysis cannot
be used are clearly shown. In fact, inviscid analysis can only be used in the ”hypersonic”
regime, which is characterized by high Reynolds and low Mach number conditions. At
higher altitudes, the reverse situation of high Mach and low Reynolds requires careful
handling of the viscous interactions that affect the invisid flow.

Fig. 1.5 Viscous interaction parameter variation for a Shuttle re-entry. [3]

Trajectory Dependence: As mentioned above, air chemistry is significantly different at
the high temperatures encountered in hypersonic flight applications. Vibrational excita-
tion of molecules, dissociation, and ionization will all occur as temperature is increased.
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However, with the exception of vibrational excitation, the onset and range of the these
effects will also vary with density, or pressure. To illustrate this point, a velocity al-
titude map is shown in Fig. 1.6. Different trajectories for re-entry, corresponding to
different values of the ballistic parameter, m/AcL, are shown on the figure (note the
range indicated for Shuttle trajectories) . The shaded regions on the map delineate
regions of thermal or chemical activity and the edges are sketched to represent where
there is 10 % and 90 % excitation or dissociation (assuming local thermodynamic equi-
librium or LTE). The temperature values that describe these ranges are those behind
the bow shock, and the density behind the bow shock depends on the altitude and the
speed. Density also decreases with increasing altitude, and the onset and completion
boundaries for each of these effects shifts to a lower temperature. This should be taken
as a qualitative indication only; these temperature values are not fixed on a linear scale.
Another point to bear in mind is that the area of vibrational excitation corresponds
only to the range in which the vibrational modes of the relevant diatomic molecules
(O2, N2, and NO) become fully excited. Vibrational excitation will be addressed more
extensively in following sections, but the important point here is that the undissoci-
ated molecules still possess significant vibrational energy, and this in turn is coupled to
dissociation.

Fig. 1.6 Velocity altitude map for earth re-entry showing different thermochemical
regimes.

Nonequilibrium Effects: In addition to these effects, when the characteristic flow time
is much shorter than the time to complete chemical reactions or energy exchange mech-
anisms, then the flow can be in a nonequilibrium state. It is in this aspect that the
Damkohler number plays a determining role. Note that for a given situation there can
be either thermal nonequilibrium, chemical nonequilibrium, or both. This is a subject of
considerable importance, as the interpretation of physical and chemical phenomena in
hypersonic flow applications often depend on the assumption of thermal and chemical
equilibrium, which allows for a simpler characterization of the thermal and chemical
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state of the flow. This assumption is often used without justification, and it is the ob-
jective of many present research activities to investigate the limits of this assumption!

Ground Test: It is apparent, even to the casual observer, that hypersonic vehicles are
not yet readily available for human transportation. At present, there is only the Space
Shuttle, and the lifetime of this vehicle has already been officially fixed (even though
it is already operating BEYOND the design lifetime). Consequently, there is very little
empirical data on vehicle design and performance and many design parameters have
been barely explored. Part of the reason for this is the difficulty in simulating flight
conditions on the ground. There relationship between actual flight data and the data
from measurements in ground test facilities is not yet well understood. Unfortunately,
flight experiments are expensive, and even ground tests in high-enthalpy facilities are
not cheap, so there is relatively little data to guide the development of analytical and
numerical tools for these applications.

In the following sections, an engineering background for the analysis of hypersonic and
high-enthalpy flows is developed. As some of the hypersonic flow regime can be usefully
addressed with perfect gas analyses (at least to the limit of the onset of real-gas effects)
a review of perfect gas flow analysis is included. Next, exact and analytical representa-
tions of caloric imperfection are derived, and the differences between calorically perfect
and imperfect gas results are compared for flow through a normal shock. Following
this comparison, the concepts underlying chemically reacting flow are introduced in a
manner consistent with the statistical mechanical approach taken to address caloric im-
perfection. Finally, the implications of caloric imperfection and chemical reaction for
ground test simulation of hypersonic flows are addressed.

2.Basic Definitions and Thermodynamic Concepts

When chemical and thermal equilibrium (based on the definitions given in the preceding
section) conditions are satisfied, then the system is said to be in a state of thermody-
namic equilibrium. Classical thermodynamics treats changes between equilibrium states
as being characterized by a succession of intermediate equilibrium states that transi-
tion infinitely slowly from one to the other. These changes are, of course, reversible.
However, in hypersonic flow, many processes irreversible, as for example the passage
of flow through a shock wave. An irreversible process is one that takes place through
a succession of nonequilibrium states. To understand this, it is assumed that in each
intermediate state, the system is in local thermodynamic equilibrium, although not nec-
essarily with its surroundings, and one can then look at the integral of the process. In
this way coupled problems of gas dynamics and heat transfer can be treated.

Just as one can distinguish between reversible and irreversible processes, a distinction
is also made between perfect and real gases. In the introductory section, a ”real” gas
was not explicitly defined. For physical chemists, a real gas denotes a situation where
the intermolecular forces must be considered in the caloric and thermal description of
the gas. This implies that a “real gas” is a thermally imperfect gas, since consideration
of the intermolecular forces is more important during phase change for a substance. To
illustrate this point, consider the general case of the typical intermolecular interaction
potential for neutral molecules, the Van der Waal’s, or dispersion interaction. (The
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intermolecular force, F (r), is related to the interaction potential, U(r), by F (r) =
−(dU(r)/dr).) The dispersion interaction is the most common for atmospheric pressure
and room temperature air. The interaction potential for the dispersion forces is sketched
in Fig. 2.1. It has two parts, an attractive potential that operates over long distances,
but typically falls off at a distance of about 10 diameters, and a repulsive potential that
dominates the interaction at short distances, such as between neighboring molecules.

U U

-A/r

σ

r r

+B/r

-A/r
6

6

n

(a) (b)

Fig. 2.1. Van der Waals interaction potential (a) and Lennard-Jones interaction poten-
tial (b).[8]
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Fig. 2.2. Compressibility of various gases as a function of pressure at T = 273 K.[8]

If the average spacing between the molecules is greater than about 10 diameters, then
the intermolecular forces can be safely ignored. For air this is a valid assumption to
pressures up to 1000 atm and for temperatures above about 30 K. Obviously, when the
condensation temperature of any constituent species is approached, the intermolecular
forces are important and they play an important role in the phase change. For other
species, such as CO2, the range of validity of the perfect gas assumption is less than for
air. This is illustrated in Fig. 2.2, where the compressibility factor Z, which is defined
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as
Z = v/videal = pv/RT ,

is shown as a function of pressure at 273 K for a number of pure gases. For a perfect
gas Z = 1, and we see that for N2 Z does not differ significantly from unity until very
high pressure, but for CO2 there is considerable variation at modest pressure. Although
CO2 is present in the atmosphere at about 200 ppm, the relatively small concentration
does not affect the behaviour of air.

Perfect Gas Equation of State

The perfect gas equation of state is usually presented in terms of moles of a gas and for
a single species it is usually written as:

pV = ηRuT ,

where p is the pressure, V is the volume, η is the number of moles, Ru is the universal
gas constant, and T is the temperature. There are many more convenient forms of the
equation. If we multiply and divide the right hand side of the above equation by the
molar mass of the particular species (or mixture, such as air), MW , then perfect gas
equation of state becomes

pV = (ηMW )
Ru

MW
T = MRT ,

where M is the mass of the gas species, and R is the specific gas constant for the species
or mixture. Dividing the equation by the mass yields,

pv = RT ,

where the lower case v now denotes the specific volume, which is also the inverse of
density, since v = 1/ρ. If we substitute this relation, we obtain the more convenient
form,

p = ρRT .

The density is also equal to the number density of molecules times the mass of an
individual molecule, ρ = nm. Furthermore, the mass of a molecule is equal to the molar
mass of the species divided by the number of molecules in a mole (Avogadro’s number),
or m = MW/NA. If these two relations are substituted into the perfect gas equation,
the following result is obtained,

p = n

(

MWR

NA

)

T .

Finally, if we recognize that the combinationMWR = Ru, then we should also recognize
that Ru/NA = k, where k is Boltzmann’s constant. This gives us another useful form
of the perfect gas equation of state:

p = nkT .
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This equation is also known to physical chemists and engineers as the ideal gas equation
of state. Whether it is called perfect or ideal, the meaning remains the same: the
description is an approximation of the actual thermal behavior of the gas. For example,
according to the perfect gas equation of state, the volume of an ideal gas at constant
pressure and 0 K is zero and the volume approaches zero as the pressure is increased to
infinity at constant temperature. Both of these scenarios do not consider the possibility
of a phase change, which is what actually happens. Still, the equation is reasonably
accurate over quite a wide range of property variation. Even when it is not strictly
applicable, it can give a useful indication of approximate behavior.

Gas Mixtures: As chemical reactions are often encountered in hypersonic flow appli-
cations it is useful to revisit the concepts of mixtures of gases. In the literature about
hypersonic and other chemically reacting flows, one finds the components described in
terms of:
a. Partial pressure, pi, where from Dalton’s law of partial pressures

∑

i pi = p.
b. Concentrations, Ci, which are the number of moles of species i per unit mixture

volume.
c. Mole fractions, χi; the number of moles of species i per mole of mixture.
d. Mass fractions, ci, which is more common in the aerospace community than mole

fraction. The mass fraction is the mass of component i per mass of mixture, and it
can also be written as ci = ρi/ρ.

All of these variables can be related to each other through the equation of state. For
example, the mole fraction can be expressed as

χi =
ηi

η
=
pi

p
,

and the mass fraction can be found from the mole fraction as

ci =

(

MWi

MW

)

χi .

By definition, both the mole fractions and mass fractions of a mixture sum to unity, or

∑

i

ci =
∑

i

χi = 1 .

The gas constant for the mixture Rm can be found from the component values and the
mass fractions as

Rm =
∑

i

ciRi ,

and the relation between mass fraction of a species and its number density is

ci =
ρi

ρ
=
niMWi

ρNA
,

which is useful for relating spectroscopically measured quantities to results from numer-
ical simulations for hypersonic flow applications.
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Real Gas Equation of State

Although most of the discussion concerns thermally perfect gases, it is instructive to
look at other equations of state that can be used for non-perfect gas situations. The
most well-known of these equations is the Van der Waal’s equation,

p =
RT

v − b
− a

v2
.

This equation expresses the relationship between the thermodynamic variables in the
same way as the perfect gas equation, but with an important modification to account
for the attractive forces of real gas behaviour at high density in the second term. Recall
that the long-range attractive potential scaling was ≈ −A/R6, and note that the second
term in the Van der Waal’s equation of state above is −a/v2. Clearly, the second term
is intended to account for the attractive potential, which becomes important as density
increases. This equation provides a useful qualitative picture of real gas behaviour, but
it is not quantitative. For example, the onset of the real gas behaviour also depends on
temperature, and this effect is not included in the above equation.

Fortunately for most applications involving hypersonic flows of air, the departure from
thermal perfection is minimial, as shown in the figure on compressiblity. For CO2, this
is not the case, and as some hypersonic ground test facilities, such as the VKI Longshot
Facility use CO2, it is important to take into account its thermal imperfection when
considering the test conditions. As the remaining examples are concerned only with air,
thermal imperfection will not be considered further in the following discussions.

3. Thermally and Calorically Perfect Gases - Supersonic Flow

If we revisit for a moment the perfect gas result

du = cvdT ,

and the analagous result for cp,
dh = cpdT ,

we see that these two expressions lead to the mathematical definitions of thermally
and/or calorically perfect gases for single component systems (or for non-reacting mix-
tures). For a calorically perfect gas, the specific heats are constant (as is γ), and both
expressions can be integrated immediately to yield

u = cvT and h = cpT .

For lower speed compressible flow, this assumption is usually acceptable and a great
deal of analytical results can be obtained for the analysis of supersonic flows. A useful
compendium of such results is the NACA Publication 1135 “Charts and Tables for
Compressible Flow” [4]. There are many excellent and comprehensive text books that
have been written on the subject of compressible flow. Some of the more commonly
encountered texts are those of Anderson [1], Leipmann and Roshko [2], Bertin [3], and
Shapiro [5]. Although it was shown to be not the best parameter for defining hypersonic
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flow, the Mach number is the most important parameter for defining compressible flows,
and the basis of the Mach number is the local speed of sound in the medium of interest.
The sound speed, a is defined formally as

a2 =

(

∂p

∂ρ

)

S

,

which for a perfect gas, is
a2 = γRT .

To find how flow and thermodynamic properties depend on the Mach number, it is
convenient to start from the first law of thermodynamics for adiabatic flow in its two
differential forms

de = −pdv and de = vdp ,

recalling that h = e+ pv. Writing the total differential for both the internal energy and
the enthalpy yields

de =

(

∂e

∂v

)

T

dv +

(

∂e

∂T

)

v

dT = −pdv (3.1)

and

dh =

(

∂h

∂p

)

T

dp+

(

∂h

∂T

)

p

dT = vdp . (3.2)

From the basic definitions of the specific heats,

(

∂e

∂T

)

v

= cv and

(

∂h

∂T

)

p

= cp ,

and these can be inserted into the respective total differential expressions. If Eq. 3.1
is then divided through by dv, and Eq. 3.2 is divided through by dp, then one obtains
after rearranging both equations

dT

dv
=

−1

cv

(

p+
∂e

∂v

)

(3.3) and
dT

dp
=

1

cp

(

v +
∂h

∂p

)

(3.4)

Dividing one of the original expressions of the first law by the other yields a third
relationship among the thermodynamic variables

dp

dv
= −p

v

(

dh

de

)

. (3.5)

As the gases are considered to be thermally perfect, the derivative terms in Eqs. 3.3
and 3.4 vanish since

de = cvdT and dh = cpdT .

Thus, by making use of the equation of state for an ideal gas, on obtains the simplified
relations

dT

dv
=

−p
cv

=
−RT
vcv

(3.6)
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and
dT

dp
=

v

cp
=
RT

pcp
(3.7)

and
dp

dv
=

−pcpdT
vcvdT

=
−pcp
vcv

(3.8)

If the thermodynamic variables are moved to the LHS of these relations, then

v

T

dT

dv
= −R

cv
,

p

T

dT

dp
=
R

cp
and

v

p

dp

dv
= − cp

cv
.

The expressions can be further simplified by recalling that the definition of γ and the
relation R = cp − cv. Substituting these relations and separating the variables yields
finally

dv

v
= − 1

(γ − 1)

dT

T
,

dp

p
=

γ

(γ − 1)

dT

T
and

dp

p
= −γ dv

v
.

For the special case of calorically perfect gases the specific heat ratio, γ, is constant and
the above expressions can be integrated directly. Taking the exponential of the result
yields the isentropic relations

v = const · T−1/γ−1 p = const · T−γ/γ−1 p = const · v−γ .

From the last relation, one also can directly evaluate the definition of sound speed, as

a2 =

(

∂p

∂ρ

)

s

= γργ−1 = γRT ,

which strictly can only be applied to perfect gases. The isentropic relations are a
convenient means for relating variations in thermodynamic properties to each other,
and to other variables of interest.

For steady, inviscid, non-reacting compressible flows in general, the governing flow equa-
tions are

Continuity: ∇ · ρ~u = 0
Momentum: ρ~u · ∇~u = −∇p
Energy: ρ~u · ∇(h+ k) = 0 ,

where k = u2/2 is the kinetic energy. From the energy equation, it is apparent that
total enthalpy is constant in the flow, and this relation can be used to write the equality
between the stagnation enthalpy (known from initial conditions, typically from a settling
chamber where u = 0) and the local value, and this can be written as

h0 = h+
u2

2
,

or, for calorically perfect gases

cpT0 = cpT +
u2

2
=⇒ γRT0

γ − 1
=
γRT

γ − 1
+
u2a2

2a2
,
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which yields

γRT0 = γRT

(

1 +
γ − 1

2
M2

)

.

Solving this expression for the temperature ratio gives

T∞
T0

=

(

1 +
γ − 1

2
M2

∞

)

−1

, (3.8)

which, when combined with the isentropic relations, gives the variation of the thermo-
dynamic variables as a function of Mach number for an isentropically expanding flow
(the subscript ∞ denotes local conditions). For pressure and density the expressions
are

p∞
p0

=

(

1 +
γ − 1

2
M2

∞

)

−γ/γ−1

(3.9) and
ρ∞
ρ0

=

(

1 +
γ − 1

2
M2

∞

)

−1/γ−1

(3.10)

Using Eqs. 3.8 to 3.10, it is possible to evaluate the local thermodynamic conditions from
the stagnation conditions and knowledge of M∞. Note that for air at STP, γ = 7/5.

The governing equations for steady, inviscid supersonic flows admit the possibility of
discontinuities in the flow, which can exist as either contact discontinuities (also known
as slip streams) or shock waves. If we consider one-dimensional steady, inviscid and
supersonic flow as sketched in Fig. 3.1, then the 3 governing equations reduce to

d

dx
(ρu) = 0

ρu
du

dx
= −dp

dx

ρu
d

dx
(h+ k) = 0

a b

(1) (2)
Flow

a b

(1) (2)
Flow

Fig. 3.1. Discontinuous flow region in a supersonic stream.

Referring to Fig. 3.1, the flow in regions (1) and (2) is considered to be uniform, but
the properties in these regions are not the same. The two light vertical lines indicate
a discontinuous flow region extending from plane a to plane b. Within each of the two
uniform flow regions therefore

d

dx
= 0 ,
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while within the discontinuous region

d

dx
6= 0 .

Using definite integrals it is straightforward to evaluate the change in conditions between
the two flow regions without knowing the details of the flow properties within the
discontinuity. For the continuity equation, this means that

∫ b

a

d

dx
(ρu)dx = 0 = ρu]ba =⇒ (ρu)a = (ρu)b or ρ1u1 = ρ2u2 . (3.11)

Since the product ρu is a constant, the momentum equation can be rearranged into a
similar, simple definite integral that yields

ρ1u
2
1 + p1 = ρ2u

2
2 + p2 , (3.12)

and from the energy equation,

h1 +
u2

1

2
= h2 +

u2
2

2
. (3.13)

Equations 3.11 to 3.13 are known as the Rankine-Hugoniot Jump Relations, and they
are used to find the conditions following a normal shock from the upstream values.
Although within the shock the flow is both viscous and heat conducting, these effects
can be ignored for most practical applications. These equations are applicable to perfect
gas wind tunnel flows and to flight (again restricted to conditions where the molecules
behave as calorically perfect, which is to a post shock temperature of about 600 to 800
K, depending on the pressure).

For flow through a normal shock, the downstream Mach number (in region 2 of Fig. 3.2
for example)is always subsonic. Normal shock waves are encountered in ground test
facilities and in hypersonic flight in the region of the nose and leading edges of the
vehicle.

Shock

M1>1 M2<1

ρ1  u1  p1 T1 ρ2 u2  p2 T2

Shock

M1>1 M2<1

ρ1  u1  p1 T1 ρ2 u2  p2 T2

Fig. 3.2. Normal shock in a supersonic stream.

Note that the jump relation for the energy equation can also be written as

γ

γ − 1

p1

ρ1
+
u2

1

2
=

γ

γ − 1

p2

ρ2
+
u2

2

2
.
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When this form is used together with the definition of the speed of sound then the change
in each variable across the can be written as a function of upstream Mach number and
specific heat ratio as

p2

p1
=

2γM2
1 − (γ − 1)

γ + 1
(3.14)

ρ2

ρ1
=

(γ + 1)M2
1

(γ − 1)M2
1 + 2

(3.15)

T2

T1
=

[2γM2
1 − (γ − 1)][(γ − 1)M2

1 + 2]

(γ + 1)2M2
1

. (3.16)

Expressions based on other parameters can also be developed and a useful compendium
can be found in Ref. [naca].

1tu

2nu1u

1nu
2u

2tu
θ

ð b

−

1tu

2nu1u

1nu
2u

2tu

θð b

β
β

θ

β

Fig. 3.3. Oblique shock in a supersonic stream.

For supersonic and hypersonic flight applications, oblique shocks are more likely to be
found than normal shocks. Oblique shocks arise in the external flow over a body that
itself has turned toward the oncoming flow, as happens for example on a deployed flap
surface, or on the leading edge of a supersonic wing, as sketched in Fig. 3.3. For an
oblique shock flow, it is the velocity component normal to the shock that experiences
the change. Referring to the Figure then, the oblique shock jump relations are

ρ1un1 = ρ2un2

ρ1u
2
n1 + p1 = ρ2u

2
n2 + p2

γ

γ − 1

p1

ρ1
+
u2

1

2
=

γ

γ − 1

p2

ρ2
+
u2

2

2
,

with the additional constraint that the tangential velocity component is unchanged
ut1 = ut2 (subscripts n and t refer to the normal and tangential components of velocity).
Obviously, the energy equation is the same for both normal and oblique shock cases.
As with the normal shock relations, all property changes across the oblique shock can
be written in terms of the upstream Mach number and the specific heat ratio. The
relations are the same as for the normal shock case, except that M1sinβ is used in place
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of M1, where β is the oblique shock angle measured relative to the incoming velocity
vector, as indicated in Fig. 3.3. The turning and wave angles are related by

tan (β − θ) =
tanβ

(ρ2/ρ1)
.

A convenient method for finding flow turning angles is to use the graphical approach
wherein the wave angle corresponding to a given turning angle is plotted for different
values of the upstream Mach number. A typical representation of this information
is shown in Fig. 3.4. For a given Mach number, there are two wave angles that will
produce the same deflection angle, corresponding to whether or not the downstream flow
is supersonic or subsonic. In addition, a curve is drawn for θ = θmax, which represents
the largest deflection angle for which an oblique shock can stay attached to a body.
For a deflection angle θ > θmax at a given upstream Mach number, the oblique shock
detaches from the body and moves upstream as a detached bow shock.

Fig. 3.4. Oblique shock relations for supersonic flow.[2]

In this section, the basic principles of steady, inviscid, supersonic flow have been re-
viewed. The results that were obtained apply to the flow of perfect gases; that is, gases
that are both thermally and calorically perfect. In the next section, the implications
of caloric imperfection will be addressed, but it should be noted that the many of the
relations that were derived in this section can be extended to conditions where air is
calorically imperfect, provided that the variation of specific heat with temperature, for
example, is properly accounted for.

4. Thermally Perfect, Calorically Imperfect Gases - Hypersonic Flow

The specific heats for a thermally perfect, but calorically imperfect, gas are functions
of temperature only. For this case, the differentials are

du = cv(T )dT and dh = cp(T )dT ,
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and when they are integrated, yield the result that u = u(T ) and h = h(T ). It is
possible to derive both rigorous and simplified analytic expressions for cv(T ) and cp(T )
from statistical mechanics methods. Since the behaviour of gases at high temperatures
near a hypersonic vehicle is the primary interest in the present discussion, the case of
thermally perfect gases will be explored in greater detail.

The aim of this section is to develop exact and analytical expressions for the tempera-
ture dependence of the important thermodynamic properties of thermally perfect, but
calorically imperfect gases using the methods of statistical mechanics and quantum me-
chanics. Owing to the general nature of this Lecture Series, it is not possible to treat
this topic in great depth, and only a brief description of the methods and the results is
feasible. Concise and clear treatments of these subjects can be found in the books of
Vincenti and Krueger [9] and Tien and Lienhard [11], among others. Throughout the
following description a number of (simplifying) assumptions are made and, wherever
possible, these are discussed in terms of their potential limitations. Again, although the
derived results are extremely useful, it should be remembered that they must be applied
and interpreted with caution. Following a brief summary of the statistical mechanical
approach, which itself is based on quantized energy levels, the quantum mechanical
descriptions of particle (atom and/or molecule) energies are discussed. The macro-
scopic properties are then determined for the cases of atoms, diatomic molecules, and
polyatomic molecules.

Statistical Mechanics

Statistical mechanics, like kinetic theory, is focused on the microscopic behaviour of
gases; typically at the molecular or atomic level. However, statistical mechanics makes
use of statistical methods to avoid having to evaluate every collisional interaction in
order to derive macroscopic, equilibrium thermodynamic (actually thermostatic) prop-
erties. Thermodynamics and statistical mechanics are formally related by the equation

S = k ln Ω ,

which relates the macroscopic property, entropy, to a statistical measure of the random-
ness of a system, represented by Ω. Specifically, Ω is a measure of how many different
ways a collection of microscopic particles can be arranged given the macroscopic condi-
tions and the nature of the particles.

The approach assumes a large collection of particles, such as atoms or molecules, and
a macroscopic state is considered to be specified when the number of particles, N ,
their volume, V , and their energy, E are known. To specify the energy states of the
individual particles, the concept of quantized, or discrete, energy levels is used. In
general, these states will be at different energies, εj , although some states can have
the same energy, and these are called degenerate levels. A key assumption is that the
particles are weakly interacting (as for a thermally perfect gas) and that each particle
is generally unaffected by the state of any other. Of course, the change from one level
to another usually involves some process, such as a bi-particle collision.

Owing to the Heisenberg uncertainty relation, our ability to precisely specify all aspects
of the system of particles is limited. The uncertainty relation can be expressed as

|∆z||∆p| ∼= h ,
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where |∆z| is the uncertainty in the position of the particle and |∆p| is the uncertainty
in the particle momentum, and h is Planck’s constant. Stated simply, this relation
expresses the impossibility of precisely defining both the position and the momentum
of a particle at the same time. The relation applies equally to other similarly reciprocal
variables (such as energy and time), and a consequence of the relation is that it is not
possible to specify a position beyond a certain level of probability that the particle will
actually be there. In quantum mechanics, this probability is expressed in terms of a
wave function, Ψ, and it is governed by the Schrödinger wave equation, which has the
following time-independent form,

h2

8π2m

(

∂2Ψ

∂x2
1

+
∂2Ψ

∂x2
2

+
∂2Ψ

∂x2
3

)

+ (ε− εp)Ψ = 0 .

In this expression, ε is the total energy of the particle, and εp is the potential energy.
The wave function is also normalized such that

∫

|ψ|2dVx = 1 ,

which means simply that the particle must exist somewhere within the system.

Fig. 4.1. Qualitative picture of the relative energy level spacings for energy modes of
molecules.

The quantized energy levels that are populated by the microscopic particles can be
separated into translational energy and internal energy modes. All particles, atoms,
molecules, and electrons, possess translational energy, except at temperatures above 0
K. All particles also have internal energy, although for atoms this energy mode is only
electronic energy. Molecules can have additional internal energy in the form of rotation
and vibration. Thus the total energy of an atomic particle is

ε = εtrans + εelect ,

Fundamentals of Hypersonic Flow - Aerothermodynamics  

3 - 20 RTO-EN-AVT-116 

 

 



and the total energy of a molecule is

ε = εtrans + εelect + εvib + εrot .

The spacings of these energy levels are not the same, and the relative magnitude of
the difference in energy level spacing for these modes is shown in Fig. 4.1. Within
each of the electronic states, there are multiple (bound) vibrational levels, and within
each vibrational level, there are multiple rotational levels. In general, the energy level
spacings are not constant. Although the translational energy is drawn with discrete
levels, these levels are practically indistinguishable at normal flight and test conditions.

At room temperature for a system in equilibrium, all of the atoms and molecules will
be in their ground electronic state (that state having zero potential energy). For most
of the levels, there are several different states that are possible for the molecule or the
atom. For the molecule, these different states may refer to a different orientation of
the axis of rotation, which can have three orthogonal directions, but each will have the
same energy. So, in general, many of the energy levels shown on the figure are actually
degenerate. Thus, for the energy levels (ε0, ε1, .....εj) there are associated degeneracies
(g0, g1, ....gj) that characterize the number of possible states associated with that level
and each level has a population of atoms or molecules (N0, N1, ....Nj). In general, we
consider for any system a collection of groups of energy states. The number of particle
in the jth level is Nj and the microstates are Cj and the energy of this level is εj . For a
given macrostate, the number of microstates is W , and the total number of macrostates
for a given total system energy and number of particles is

Ω =
∑

j

W (Nj) ∼= Wmax .

The term, Ω, is a measure of the system disorder, which is also a thermodynamic
probability. We are anticipating what we will find by supposing a priori that there is
one term, Wmax that contributes the most to Ω.

Fig. 4.5. Distribution of population in a simple energy level system.
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A simple example of a possible population distribution is shown in Fig. 4.5. The level
energies are at the top, and the particles are distributed among these energies. The total
energy is the sum for all particles in the row. Three possible population distributions
that satisfy the macroscopic constraints of a fixed total number of particles and a fixed
total energy are shown. The statistical mechanical approach is based on determining
a method for enumerating the possible microstates in such a way as to find the most
probable distribution.

One of the key points of the analysis is that the possible number of microstates Cj

is greater than the number of particles Nj . Then, the approach is to maximize the
expression for lnW (from looking for a maximum considering that the derivative with
respect to the small changes in the number of particles will be equal to zero) subject
to the constraints of known total particle number and known system energy using the
method of Lagrange multipliers. to find the result. With the assumption that the there
is one leading contribution to ln Ω = lnWmax, we find

lnΩ = N

(

ln

∑

j Cje
−βεj

N
+ 1

)

+ βE .

This equation provides the total number of microstates that is consistent with the system
constraints of total particles and total energy, but β is an as yet undetermined constant.

For convenience it is useful to define a partition function,

Q =
∑

j

Cje
−βεj ,

and it is now possible to recognize the leading term in the expression for ln Ω as a form
of the Boltzmann distribution. This can now be written in a more suitable form,

N∗

j

N
=
Cje

−βεj

Q
.

The remaining constant β must be determined using the system constraint of the total
energy, but for now there is not enough information to do this. Note that in general
the partition function depends on the thermodynamic variables, or Q = Q(V, T ).

Up to this point, the classification of the j groupings has been arbitrary. Now it is
useful to specify the i energy levels of the system as defining the different groups. With
this specification, the Boltzmann distribution becomes

N∗

i

N
=
gie

−βεi

Q
.

This effectively replaces the Cj number of microstates (all having the same energy εj)
with the degeneracy of the particular energy level. Now it is possible to write the
relation between the derived result and the system entropy as,

S = k ln Ω = k

[

N(ln
Q

N
+ 1) + βE

]

.
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It is possible to use Gibb’s relation to evaluate the constant β, since

(

∂S

∂E

)

V,N

=
1

T
.

Taking the derivative above with respect to the energy, it is clear that β = 1/kT .
Finally, the relationship between the system entropy and the microscopic distribution
of particles is

S = Nk(ln
Q

N
+ 1) +

E

T
,

and this is the fundamental relation between the macroscopic system properties and the
microscopic distribution of the particles. From this relation other macroscopic thermo-
dynamic variables can be determined as a function of the microscopic distribution. For
example, the total energy is

E =
∑

j

N∗

j εj =
∑

j

εj
Ngje

−εj/kT

Q
=
N

Q

∑

j

εjgje
−εj/kT .

Recall that Q = Q(V, T ) and from its definition, it can be differentiated with respect to
temperature at constant volume, which yields

(

∂Q

∂T

)

V

=
1

kT 2

∑

j

εjgje
−εj/kT .

This can be substituted into the expression for the total energy to yield,

E =
N

Q
kT 2

(

∂Q

∂T

)

V

= NkT 2

(

∂(lnQ)

∂T

)

V

,

where the second form is more convenient. The specific energy is e = E/M , where M
is the system total mass. For the specific energy, the simplified relation is

e = RT 2

(

∂ lnQ

∂T

)

V

, (4.1)

and for the specific enthalpy, we obtain a similar form,

h = RT +RT 2

(

∂ lnQ

∂T

)

V

.

Recall that since

cv =

(

∂e

∂T

)

v

and cp =

(

∂h

∂T

)

p

,

these can also be related to the partition functions. Finally, a relation for pressure that
is derived from the Helmholtz potential can also be written as

p = MRT

(

∂ lnQ

∂V

)

T

= nKT

(

∂ lnQ

∂v

)

T

.
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These relations are most useful for evaluating the thermodynamic properties that are
important in hypersonic flow applications. All thermodynamic properties of a collection
of particles, atoms or molecules, can be related to the microscopic description of how
particles are distributed among the particular species energy levels.

Quantum Mechanics

Once this most probable distribution is found, the populations of the different energy
levels are known, and the partition functions can be evaluated. From the partition func-
tions, it is possible to determine the macroscopic thermodynamic parameters. This is a
truly general result, for LTE conditions; however, the details of how these populations
are arranged among the energy levels depend on quantum mechanical considerations
of the energy level spacings for a given system. To find how energy levels are dis-
tributed, the Schrödinger equation is solved separately for the energy of interest. As
this is of interest to many fields, one can simply look for the four exact solutions to the
time-independent Schrödinger equation:
1. Particle in a box ⇒ translational energy
2. Rigid rotor ⇒ rotational energy
3. Harmonic oscillator ⇒ vibrational energy
4. Single electron in a central field ⇒ electronic energy

Again, owing to the constraints of this Lecture Series, it is not possible to go through
all the details of these solutions (see [9-11]). Instead, the simplest case of translational
energy will be presented and then combined with the results of the other solutions.

Fig 4.6. Idealized representation of a particle in a box.

Particle in a Box

The case of the particle in a box is the simplest representation of translational energy
quantizaton. A box is constructed as shown below in Fig. 4.6, which illustrates only
one dimension of the box. There are two walls on the x-axis, at x = 0 and x = a. Inside
the box the potential energy is zero (V = 0), but at the walls the potential energy is

Fundamentals of Hypersonic Flow - Aerothermodynamics  

3 - 24 RTO-EN-AVT-116 

 

 



infinite (V = ∞) and this gives an infinite strength repulsive force at the wall to confine
the particle within the box. Outside the box, the potential energy is also infinite. The
time independent wave equation for the whole system is

∇2Ψ +
8π2m

h2
(ε− εp)Ψ = 0 .

Owing to the boundary condition, it is clear that Ψ = 0 at x = 0, a and that outside of
the box, Ψ = 0 also, meaning that the particle has no probability of being outside the
box. Within the box, where the potential energy is zero, the wave equation takes the
form

∇2Ψ +
8π2m

h2
(ε)Ψ = 0 .

The boundary conditions are the same in each of the three coordinate directions, and
this gives a second order differential equation in x, y, z, which can be solved by separation
of variables,

Ψ(x, y, z) = X(x)Y (y)Z(z) .

Following substitution, this gives

1

X

d2X

dx2
+

1

Y

d2Y

dy2
+

1

Z

d2Z

dz2
+

8π2m

h2
ε = 0 .

Because the sum of these pure derivatives is equal to a constant, this constant can be
set as kx = (8π2m/h2)εx, etc. Doing this yields three ordinary differential equations of
the form

d2X

dx2
+

8π2m

h2
εxX = 0 ;X(0) = X(a) = 0 .

The general solution to an equation of this type is

X = Ax sin

(
√

8π2mεx
h2

x

)

+ Bx cos

(
√

8π2mεx
h2

x

)

.

Imposing the boundary conditions yields Bx = 0 and
√

8π2mεx/h2 = nxπ/a, where
nx = 1, 2, 3, .... The solution for X is then

X = Anx sin
(nx

a
πx
)

where n2
x =

8a2mεx
h2

.

For all three directions then, the quantized energy components in each direction are

εxi
=
n2

xi
h2

8ma2
i

,

where the i values represent the directions x, y, z and the nxi
are the quantum numbers.

The total translational energy of the particle in the box is therefore

εtr =
h2

8m

(

n2
x

a2
+
n2

y

b2
+
n2

z

c2

)
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The wave function has the form

Ψnx,ny,nz
= Anx sin

nxπx

a
Any sin

nyπy

b
Anz sin

nzπz

c
,

and by making use of the normalization property,
∫

Ψ∗ΨdV = 1, of the wave function,
it is possible to evaluate the remaining constants. Doing this involves integrating the
wave function times its complex conjugate over the confines of the box,

∫

Ψ∗ΨdV = (AnxAnyAnz)
2

∫ a

0

sin2 nxπx

a
dx

∫ b

0

sin2 nyπy

b
dy

∫ c

0

sin2 nzπz

c
dz .

This produces the relatively simple result that (AnxAnyAnz) =
√

8/abc. Finally, we
have the result for the wave function for translational energy

Ψnx,ny,nz
=

√

8

abc
sin

nxπx

a
sin

nyπy

b
sin

nzπz

c
.

Note that for a single dimension, which is a little easier to keep up with in typing, the
result for probability is

Ψ(x) =
√

2/a sin
nπx

a
,

the translational energy is ε = n2h2/8ma2, and the quantum numbers are n = 1, 2, 3, ....
It is apparent that the energy is increasing as the square of the quantum number, so
the energy spacing is increasing at higher levels.

The separation between energy levels is

∆ε = εn+1 − εn =
(2n+ 1)h2

8ma2
,

which is only important for a very small box. For larger containers that represent
practical length scales, the energy differences become immeasurably small (∼ h2/ma2).
Considering nitrogen, the mass of a molecule is .028 kg/mol /6(10)23molecules/mol, or
4.7(10)−26kg/molecule and the spacing is ∼ 1.2(10)−42J/a2. For dimensions of systems
of particles that are of interest in hypersonics, (> 10−6m) the spacing between energy
levels will be quite small.

The general case we have examined considers a box of arbitrary dimensions. We can
look at the special case of cube and use the result to illustrate the concept of degeneracy.
For this case, the total energy is

ε =
h2

8mL2
(n2

x + n2
y + n2

z) ,

since the sides are a = b = c = L. The wave function of the lowest energy level is
Ψ1,1,1 and this level has a total translational energy of ε1 = 3h2/8mL2. The next level
occurs for a quantum number change of 1, and there are three possible wave functions
for this level, Ψ2,1,1,Ψ1,2,1, and Ψ1,1,2. Each of these wave functions corresponds to a
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distinct and separate state, but all have the same energy, ε2 = 6h2/8mL2 = 2E1. These
levels are said to be degenerate. The assumption of a cubic box is responsible for the
degeneracy. If the box has sides of arbitrary length, the symmetry in the system is
removed, as is the degeneracy.

Rigid Rotor

To understand the quantum mechanical evaluation of the rotational energy of molecules,
it is best to consider the example of a rigid rotor for a diatom. This is illustrated below
in Fig. 4.7, which shows a diatom as two nuclei connected by a rigid bar. The spacing
between the two nuclei is the equilibrium interatomic separation Re, which corresponds
to the zero energy point of vibration for a harmonic oscillator. To solve for the rotational
energy distribution it is convenient to ignore the fact that the vibrational and rotational
energies are actually coupled and that there is centrifugal distortion of the molecule at
high rotational energy.

Fig 4.7. Idealized representation of a rigid rotor.

Normally, it is easiest to solve for the rotational energy in a spherical coordinate system
and then use variable substitution to find the expression for the rotational energy,

εrot = J(J + 1)
h2

8π2I
,

where the moment of inertia of the diatom I = µR2
e and J is the rotational quantum

number. As J increases, the rotational energy increases as the square of J . Each value of
Erot is degenerate, meaning that there are multiple levels of the same rotational energy,
and the value of the degeneracy is equal to gr = 2J + 1 (this came from a constraint
of the solution for the rotator). In spectroscopy, the rotational constant for diatomics

is written as B = h2

8π2I . This yields the expression for rotational energy that is most
commonly encountered in physical chemistry and in hypersonics,

εrot = BJ(J + 1) ; J = 0, 1, 2, ..... .

Harmonic Oscillator

The simplest representation of the vibrational motion is that of a harmonic oscillator. A
conceptual rendering of this system is shown in Fig. 4.8. The two nuclei are considered to
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be attached by a spring, with constant k, and equilibrium spacing Re. The problem can
be considered as a reduced mass attached to a fixed wall by a spring with a coordinate
system x = R − Re. The potential energy of the spring is V = kx2/2. Again, from
the solution of the appropriate wave equation description of the system, the allowed
(quantized) values of the vibrational energies are

εvib =
h

2π
ω(v +

1

2
) ; v = 0, 1, 2, 3, ... ,

where v is the vibrational quantum number and ω is the characteristic vibrational
frequency (which has the classical value

√

k/µ for the idealized oscillator). Note that
even at v = 0, there is still vibrational energy = hν/2, and this is called the zero point
energy of the system. Also, for the harmonic oscillator the energy levels are equally
spaced, and the degeneracy of each level is unity. For polyatomic molecules there are
usually more vibrational modes, and these can be degenerate if the symmetry of the
molecule allows it. However, for some polyatomics, such as for CO2, the vibrational
modes can be considered to be independent, and each one can be quantized separately
and summed to obtain the total vibrational energy.

Fig 4.8. Idealized representation of a harmonic oscillator compared to actual diatom.

Corrections to Simple Model

In reality, diatomic molecules are not harmonically oscillating rigid rotors and each
energy mode interferes with the other. For example, when the vibrational energy is
very large, the spring restoring force becomes non-linear and the potential energy is
no longer parabolic. This is shown in the figure of the potential energy diagram for a
diatomic molecule. To account for this effect accurately, more terms are used in the
vibrational energy, such as

εvib = hν

[

(v +
1

2
) − xe(v +

1

2
)2
]

.

With the additional term, the vibrational spacing is no longer constant, but decreases
with increasing v.
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There is also a vibration-rotation interaction that follows the anharmonicity. Since the
internuclear spacing increases for the higher v levels, the moment of inertia increases
also, and so the rotational energy must also be corrected. This is also done using a
term to correct the rotational constant that is dependent on the vibrational quantum
number,

εrot = BvJ(J + 1) = (B − αe(v +
1

2
))J(J + 1) .

These correction factors are usually determined from small perturbation theory and
they are applied to the general solution of the idealized system for each of the energy
modes.

Partition Functions and Thermodynamic Quantities

Instead of a single particle in a box, we now consider the case of multiple particles
that only weakly interact within a box. To evaluate the partition function for the
translational energy for this situation, recall that the expression for the translational
energy for the particle in a box was

εtr =
h2

8m

[

(nx

a

)2

+
(ny

b

)2

+
(nz

c

)2
]

; nx, ny, nz = 1, 2, 3, ... .

The partition function represents the sum of all of the energy levels, and for the trans-
lational energy this means

Q =
∑

i

e−εtri/kT =
∞
∑

nx=1

exp

( −n2
xh

2

8mkTa2

) ∞
∑

ny=1

exp

(

−n2
yh

2

8mkTb2

)

∞
∑

nz=1

exp

( −n2
zh

2

8mkTc2

)

.

This expression can be evaluated by noting that

∞
∑

nx=1

exp

( −n2
xh

2

8mkTa2

)

∼=
∫

∞

0

exp

( −n2
xh

2

8mkTa2

)

dnx = a

√

2πmkT

h2
.

Folowing a similar treatment of the other quantum numbers and noting that (abc = V )
one obtains

Qtr = V

(

2πmkT

h2

)3/2

.

As we anticipated, the Qtr = Qtr(V, T ). Again, the assumptions in this derivation were
that T > 5 K, and weakly interacting particles. With the partition function known, the
translational specific energy can be evaluated by using Eq. (10-1) as

etr = RT 2

(

∂ lnQtr

∂T

)

v

= RT 2 3

2T
=

3

2
RT .

The contribution to the specific heat at constant volume from the translational energy
is then

cvtr =
3

2
R .
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This component of the specific heat is the same for atoms and molecules. Additional
contributions come from internal energies, of which the electrical energy contributes to
both atoms and molecules, while only molecules have rotational and vibrational energy
modes.

For molecules, the partition function would normally be determined by summing all of
the energy levels for these modes as

Q =
∑

i

gie
−εi/kT =

∑

i

gie
−(εtri+εroti+εvibi+εelecti)/kT .

However, to simplify the evaluation we once again assume that all the energy modes are
independent and then we factor the sums

Q =
∑

i

gtri
e−εtri/kT

∑

i

gri
e−εroti/kT

∑

i

gvi
e−εvibi/kT

∑

i

gelie
−εelecti/kT = QtrQrotQvibQelect .

This very important simplifying assumption allows us to write the energy as

e = RT 2

(

∂ lnQtr

∂T

)

v

+ RT 2
∑

int

(

∂ lnQint

∂T

)

v

= etr +
∑

int

eint ,

which also simplifies the expression for the specific heat,

cv =

(

∂e

∂T

)

v

= cvtr +
∑

int

cvint ,

and for the pressure

p = MRT

[(

∂ lnQtr

∂V

)

T

+

(

∂ lnQint

∂V

)

T

]

.

For the electronic mode, which contributes for both atoms and molecules, the energy
level spacings are typically very large. Because of this, there is no closed form analytical
expression for the electrical partition function. Rather, it is evaluated by summing the
levels, and usually only the lowest levels must be considered. The electrical states
of atoms and molecules are often degenerate, so some care should be taken in the
evaluation. If we define a characteristic electronic temperature as Θe

i = εelecti/k, we
can write

Qelect = g0 + g1e
−Θe

1/T + g2e
−Θe

2/T + ... .

By convention, the electronic energy of the zeroth state is taken as zero. Generally
two terms are enough for most cases, and the error for neglecting the next term is very
small. (Beware of an important exception to this: atomic oxygen which has a triplet,
nondegenerate ground state!) The electrical contribution to the specific energy is then

e = RΘe
1

(g1/g0)e
−Θe

1/T

1 + (g1/g0)e−Θe
1
/T

.
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The quantized rotational energy that was determined from the solution of the wave
equation for a rigid rotor was εrot = BJ(J + 1) and the degeneracy was 2J + 1 for the
different J levels. If we define a characteristic rotational temperature as θr = B/k, then
we can evaluate the rotational partition function as

Qrot =
∑

J

(2J + 1)e−J(J+1)θr/T .

For most applications, the temperature will be much greater than the characteristic
rotational temperature, which is usually on the order of 1 to 5 K. (Beware of the
exception: molecular hydrogen, which has θr = 85 K.) We can therefore argue that for
θr/T << 1 the summation is approximately equal to the area under the curve of the
“continuous” function, or

Qrot =

∫

∞

0

(2J + 1)e−J(J+1)θr/TdJ .

This can be evaluated easily by the substitution z = J(J + 1) as

∫

∞

o

e−zθr/T dz =
T

θr
.

For diatomic molecules, the result also depends on whether or not the two nuclei are
different, with

Qrot =
T

σθr
,

and σ = 2 for homonuclear molecules and σ = 1 for heteronuclear molecules. For
either type of diatom, the same values of erot = RT and crot = R are obtained for
the rotational contributions to the specific energy and specific heat at constant volume.
The Boltzmann distribution of molecules among the rotational energy levels is then

NJ

N
=

(2J + 1)σθr

T
e−J(J+1)θr/T .

For a diatomic molecule, the rotational mode becomes fully excited at very low temper-
atures, and it contributes a constant value to the specific heat at higher temperature
values.

The solution to the Schrödinger wave equation for a harmonic oscillator gave a quantized
vibrational level energy of εvibv = hν(v + 1/2). For convenience, it is easiest to look at
the distribution relative to the zero point energy, and we will evaluate the vibrational
partition function as

Qvib =
∑

v

e−vhν/kT .

As in the other examples, we define a characteristic vibrational temperature as θv =
hν/k and we then have

Qvib =
∑

v

e−vθv/T =
∑

v

xv =
1

(1 − x)
where x = eθv/T .
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The evaluation of this summation in this way requires that x < 1, but of course the ex-
pression is used beyond this range. We then find that the vibrational partition function
is

Qvib =
1

1 − e−θv/T
.

The contribution of the vibrational energy to the specific energy is

evib = RT
θv/T

eθv/T − 1
,

and the contribution of the vibrational mode to the specific heat at constant volume is

cvvib = R

[

θv/2T

sinh(θv/2T )

]2

.

The characteristic vibrational temperatures are on the order of 2200 K for O2 and 3390
K for N2. In contrast to the rotational mode, the vibrational contribution is not full at
temperatures of interest in hypersonics. Thus, the vibrational contribution will change
with temperature, and this has significant impact on the analysis of high temperature
flows.

Fig 4.9. Specific heat at constant volume as a function of temperature for H2 showing
the different contributions.[16]

Finally, we can obtain a useful result for the specific heat at constant volume of a
diatomic molecule by combining the results of the previous examples

cv
R

=
5

2
+

[

θv/2T

sinh(θv/2T )

]2

.

This result is plotted in Fig. 4.9, as a function of temperature for H2. We see that the
vibrational mode contributes roughly R/2 when T/θv = .33. This also means that the

Fundamentals of Hypersonic Flow - Aerothermodynamics  

3 - 32 RTO-EN-AVT-116 

 

 



specific heat ratio γ, which has the value (7/2)/(5/2) = (7/5) at room temperature,
decreases to 9/7 when the vibrational mode is fully excited.

Another important attribute of the analysis that we should observe is that only one of
the partition functions depends on the system volume. The partition functions from
the internal energy modes do not have any dependence on the volume of the system;
at least, not for a thermally perfect gas. So we can find the useful and expected result
that

p = MRT

(

∂(lnQtr)

∂V

)

T

= MRT

(

1

V

)

.

This is obviously consistent with the macroscopic result.

Table 4.1 Characteristic rotational and vibrational temperatures of some common molecules.

For reference, the characteristic rotational and vibrational temperatures of some com-
mon molecules are given in Table 4.1.[11] In general, the heavier the molecule, the lower
the characteristic temperatures.

The vibrational mode is really the important one for hypersonic flows. In general, for
an n-atom molecule, there are multiple vibrational modes. If the structure is linear,
there are m = 3n− 5 modes, and if the structure is nonlinear, there are m = 3n− 6 if
the structure is non-linear. As usual, a simplifying assumption is made that the various
vibrational modes are independent. This allows us to write

εvib =
m
∑

i=1

hνi(vi +
1

2
) .

Since we have assumed the modes to be independent, we can immediately write the
vibrational partition function as the product of the partition functions for the individual
modes as

Qvib =

m
∏

i=1

Qvibi =

m
∏

i=1

1

1 − e−θvi/T
.
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The specific heat at constant volume can then be written as

cv =
5

2
+

m
∑

i=1

(

θvi/2T

sinh (θvi/2T )

)2

.

This means that there is considerably greater heat capacity in the triatom than in the
the diatom.

Before introducing the topic air chemistry, it is useful to consider first the case of an
adiabatic, inviscid, 1-D flow through a normal shock wave. The reason for doing this is to
demonstrate the progression of caloric imperfection through internal energy excitation
followed by chemical reaction. This, in fact, describes the real situation, since the
rapid heating of diatomic molecules at a shock wave involves collisionally pumping the
molecular population up through the vibrational levels to dissociation. In the literature,
this is vibrational-dissociation coupling.

Consider a stationary normal shock, where region 1 refers to the gas upstream of the
shock and region 2 refers to the gas downstream of the shock. For this case, the jump
conditions at the shock can be written in the following form

u2

u1
=
ρ1

ρ2
= ρ12

p2

p1
= 1 +

ρ1u
2
1

p1
(1 − ρ12) = p21

h2

h1
= 1 +

u2
1

2h1
(1 − ρ2

12) = h21 .

Assuming that the conditions of the gas stream are known upstream of the shock, then
the unknowns are the conditions of the downstream flow, u2, p2, ρ2, h2.

For a thermally perfect gas, the equation of state is the familiar p = ρRT . In addition,
h = h(T ) only. Adding T2 to the list of unknowns, there are now 5 equations for the 5
unknown gasdynamic variables in region 2.

Case 1. Calorically Perfect Gas

For the case of a calorically perfect gas, h = cpT , and cp = a constant. Taking the first
case of a diatomic molecule at room temperature and ignoring the vibrational contri-
bution for the moment, then the value of the specific heat derived from translational
and rotational contributions is cp = (7/2)R. The assumption of constant cp requires
that the shock be not too strong. Using the upstream Mach number as the independent
variable, one can make use of the relations,

M1 =
u1√
γRT1

=
u1

√

γp1/ρ1

,

where γ has the perfect gas value of 7/5. Using these relations in the jump equations
yields (Eqs. 3.14 - 3.16):

ρ21 = u12 =
(γ + 1)M2

1

(γ − 1)M2
1 + 2

,
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p21 = 1 +
2γ

(γ + 1)
(M2

1 − 1) ,

h21 = T21 = 1 +
2(γ − 1)(γM2

1 + 1)

(γ + 1)2M2
1

(M2
1 − 1) ,

For this case all the variables can be calculated from a knowledge of the upstream
temperature and flow speed. If the shock is very strong (M1 >> 1), the density jump
approaches the following limiting value,

ρ2

ρ1
=
γ + 1

γ − 1
.

For a diatomic gas with constant γ = 7/5 this limiting density ratio is 6. (Of course, a
strong shock will violate the assumption that the specific gas is constant!)

Case 2. Thermally Perfect, Calorically Imperfect Gas

This case is more realistic, and permits the analysis of stronger shocks for practical gases
than the first case. As with the first case, the gas is still considered to be thermally
perfect and a diatomic. However, the temperature rise across the shock wave is sufficient
to promote vibrational excitation. Owing to this excitation, the enthalpy is

h2

RT2
=

7

2
+

θv/T2

eθv/T2 − 1
.

With this additional complication, the solution must be found iteratively. If the up-
stream condition is still that of a perfect gas h1 = 7RT1/2, then the enthalpy ratio
across the shock will be

h21 = T21 +
2

7

θv/T1

eθv/T2 − 1
.

A general iterative approach is to find the downstream parameters from the jump rela-
tions of the perfect gas case after choosing a value of ρ12, and then computing a corrected
enthalpy based on the equation above, using also T21 = p21ρ12. This is repeated until
everything converges.

To illustrate the trends from this approach, representative curves are shown in Fig.
4.10, where the results for the calorically imperfect jump conditions are all normalized
by their perfect gas results as a function of the upstream Mach number M1. These
calculations were done for air at T1 = 293 K, and we can see that the departure from
ideal gas behaviour occurs near M1 = 2 and the difference grows with increasing Mach
number. As the Mach number increases, more of the translational energy goes into
excitation of the internal energy modes of the gas, which means less energy is available
for translation downstream. This means that the temperature rise across the shock is
less for a calorically imperfect gas than for an ideal gas, as we see on the figure. The
reduced temperature rise causes an increase in the density rise across the shock. If we
now think back to the case of a hypersonic vehicle bow shock, we see that this increase
in density is offset by a decrease in flow area to conserve mass, and this is the mechanism
by which the shock moves closer to the body for hypersonic flight.
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When M1 is greater than 6 or 7, air becomes more active chemically, and it begins to
dissociate. At this point some method is needed to predict the chemical composition of
any gas as it begins to dissociate. There are at least two approaches to take for this, and
both lead to the same result: the law of mass action. The first approach may be more
familiar, since it is done through classical thermodynamics. This approach is examined
first because it provides a useful illustration of how the energies of molecules and their
constituent atoms are related. The second approach is a statistical mechanical approach
that follows the same general approach that was used in evaluating caloric imperfection
in gases.
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Fig 4.10. The effect of caloric imperfection on thermodynamic property ratios across a
normal shock.

5. Aerothermochemistry Fundamentals

Chemical Thermodynamics

To simplify the approach, we consider the case of thermal and mechanical equilibrium.
There are no unbalanced forces in the system and all species are at the same temperature
as the surroundings. Moreover, the species populations follow a Boltzmann distribu-
tion for their internal energy levels. The state of the system is characterized by the
p, T, V, η1, η2, ...., ηL, where the ηs are the species mole numbers. These thermodynamic
variables are related by Dalton’s law of partial pressures, which is

pV = ηRuT =
∑

s

η∗sRuT =
∑

s

ηsRuT ,

for a thermally perfect gas. This equation actually applies to both chemical equilibrium
in the first form, where the equilibrium values of the mole numbers are denoted by the
η∗, and non-equilibrium, where the instantaneous values of the mole numbers are used.
The total energy and entropy of the system for the general case are

E =
∑

s

ηsês(T ) and S =
∑

s

ηsŝs(T ) ,

Fundamentals of Hypersonic Flow - Aerothermodynamics  

3 - 36 RTO-EN-AVT-116 

 

 



where the ê and ŝ denote the energy and entropy on a per mole basis. This designation
will be used explicitly throughout the analysis.

For a general chemical reaction involving the species Xs, we have the following expres-
sion

α1X1 + α2X2 + ...+ αjXj ⇀↽ βj+1Xj+1 + ...+ βLXL ,

where the α and β values represent the signed stoichiometric coefficients of the reaction,
which are negative by convention on the LHS of the equation and positive on the RHS.
To simplify the notation we define general stoichiometric coefficients as

νs = +βs (RHS) and νs = −αs (LHS) .

We define a degree of advancement of a reaction as dξ and note that the change in mole
number for each species as the reaction advances is given by

dηs

νs
= dξ .

As an example, it is of interest to know the amount of energy required to dissociate one
mole of a molecular species to form 2 moles of the atom. The reaction can be written
as N2 → 2N . Also recall that the conservation of energy can be expressed as

dH = dQ+ V dp ,

and we are interested in finding Q =
∫ 2

1
dH = H2 −H1 at constant pressure where the

system enthalpy at each condition is H =
∑

s ηsĥs(T ). For the molecule H1 = ĥN2

and for the dissociated atoms H2 = 2ĥN . The enthalpy is related to the energy of each
species by the relation

ĥs = ês + RuT ,

where êN = (3/2)RuT for the atom and êN2
= (5/2)RuT for the molecule (assuming

that T << θv). Using these values, the heat required to dissociate one mole of N2 is

Q = 2

(

5

2
RuT

)

− 7

2
RuT =

3

2
RuT .

This energy is too small, so there is something incorrect in the approach that ignores
the amount of energy in the chemical bond.

The amount of energy that was not considered is equal to the dissociation energy, and
we see that we cannot take an arbitrary zero point for both atoms and molecules to
calculate their enthalpies. In fact, we choose to take the atom energy as the common
zero point, and then subtract the dissociation energy, which is known from spectroscopic
measurements, from the enthalpy of the molecule. This convention is illustrated in
Fig. 5.1, which shows an arbitrary diatom potential curve (energy vs. internuclear
spacing), with the energies of the atoms and molecules noted. The enthalpy for the
parent molecule is now

ĥN2
=

7

2
RuT −NADN2

,

Fundamentals of Hypersonic Flow - Aerothermodynamics 

RTO-EN-AVT-116 3 - 37 

 

 



where NA is Avogadro’s number, and DN2
is the dissociation energy per molecule. The

amount of heat required to dissociate one mole of N2 is now

Q =
3

2
RuT +NADN2

,

which is much more reasonable. To understand the relative energy in each term, we can
define a characteristic temperature of dissociation as θD = D/k, where k is Boltzmann’s
constant. Then NADN2

= Ruθ
N2

D and we have Q = Ru((3/2T + θN2

D ). For nitrogen, the
characteristic dissociation temperature is on the order of 113,000 K.

Atom and 
molecule 
reference

Fig. 5.1. Energy reference point for molecules and atoms.

The difference in energy is the bond energy, or dissociation energy. Finally, we note
that the amount of heat calculated above is the amount of heat required for one unit of
advancement of the reaction, so in general we can write

(

dQ

dξ

)

p,T

=
∑

s

νsĥs ≡ ∆Ĥ ,

where ∆Ĥ is the heat of reaction. This can be derived more formally by noting that

dQp,T = dH =
∑

s

dηsĥs(T ) .

If both sides are divided by dξ, and then we can write

(

dQ

dξ

)

p,T

=
∑

s

dηs

dξ
ĥs =

∑

s

νsĥs ,

since by definition dηs = νsdξ.
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Law of Mass Action

To shorten this process, we will start the derivation from the Gibbs equation, but we will
discuss both the concept of entropy maximization and Gibbs free energy minimization.
Recall from thermodynamics that the Gibbs equation is

TdS = dE + pdV −
∑

s

µ̂sdηs ,

where all terms have been defined previously except the chemical potential, µ̂s. For a
chemically reacting system, there are two contributions to entropy; those into or out of
the system (by heat transfer, for example) and from internal production via chemical
reaction. Therefore, the differential entropy is

dS = deS + diS where deS =
dQ

T
and diS ≥ 0 .

The first law of thermodynamics can be written as dQ = dE + pdV , and this can be
substituted into the Gibbs relation to give

TdS = dQ−
∑

s

µ̂sdηs .

If we consider the case of an adiabatic flow, then

TdS = −
∑

s

µ̂sdηs ≥ 0 .

Finally, the relation between the stoichiometric coefficients and the change in species
mole numbers, dηs = νsdξ, can be used to derive the constraint that

∑

s

µ̂sνsdξ ≤ 0 ,

based on the internal production of entropy by chemical reaction. From this result we
can infer that a necessary condition for chemical equilibrium (without heat addition) is
that the internal entropy production be 0. For finite dξ, this means that also that the
sum of the chemical potentials times the stoichiometric coefficients is zero.

∑

s

µ̂∗

sνs = 0 .

This is the equation of reaction equilibrium that is obtained from the condition of
entropy maximization.

A more useful relation that describes chemical equilibrium can be derived based on the
minimization of the Gibbs free energy. Recall the definition that

G ≡ H − TS ⇒ dG = dE + pdV − SdT − TdS ,
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and from the preceding analysis we can substitute for TdS using the relation given
earlier to eliminate some terms on the RHS and obtain,

dG = −SdT −
∑

j

µ̂jdηj .

If we specify conditions of constant pressure and temperature, we obtain the result that

dGp,T =
∑

j

µ̂jdηj =
∑

j

µ̂jνjdξ ≤ 0 .

This is the same result that was obtained from the analysis of the system entropy. Again,
at equilibrium dξ = 0, and the same equilibrium condition,

∑

s νsµ̂s = 0 is also found
from the analysis of the Gibbs free energy. Consequently, since entropy was maximized,
the Gibbs free energy must be minimized. Furthermore, for a single species

(

∂G

∂ηs

)

p,T,η′

s

= µ̂s ,

where the η′s is used to denote that the mole numbers of the other species are kept
constant. This result shows that the chemical potentials are the specific Gibbs free
energies. These are on a molar basis, and they are evaluated at the conditions of the
mixture. To acknowledge this, we now substitute the symbol for the specific Gibbs free
energy for the chemical potential, ĝs = µ̂s. The specific Gibbs free energy (gfe) can also
be expressed as

ĝs = ĝ0
s + RuT ln ps ,

where the ĝ0
s is the gfe for the species in its pure state (η = ηs) at unit pressure, and ps

is the partial pressure of species s. At equilibrium then,

∑

s

νsµ̂
∗

s =
∑

s

νs(ĝ
0
s + RuT ln p∗s) = 0 ,

which can be rearranged as follows

−
∑

s νsĝ
0
s

RuT
=
∑

s

νs ln p∗s = ln
∏

s

(p∗s)
νs .

The latter relation can be recognized as the law of mass action, and it can be written
in terms of the equilibrium constant Kp as

ln
∏

s

(p∗s)
νs = lnKp(T ) ,

or, simply

Kp(T ) =
∏

s

(p∗s)
νs .
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The equilibrium constant is also the ratio of the forward reaction rate to the backward
reaction rate,

Kp(T ) =
kf (T )

kb(T )
.

The variation of the equilibrium constant is found by

d(lnKp(T ))

dT
=

∆Ĥ

RuT 2
,

where ∆Ĥ ≡
∑

s νsĥs(T ) is the heat of reaction. This equation is known as the Van’t
Hoff equation, and it describes which way the reaction will shift if you change tem-
perature. It can also be used to calculate ∆Ĥ for a reaction based on the measured
temperature variation of the equilibrium constant.

Examples of Air Thermochemical Reactions

At certain high temperature equilibrium conditions, there is a significant amount of
NO present in a hypersonic air flow. This is important for a number of reasons. First,
NO is a precursor of NOx, which is a pollutant, and, second, it is strongly radiating
species when it is thermally excited. Finally, it is also a useful species for making
Laser-Induced Fluorescence measurements in high-speed flows, because it has allowed
single-photon transitions that are accessible to commercially available laser systems.

To illustrate the use of the equilibrium constant, we would like to find the temperature
at which there is 1000 ppm of NO in 1 atm of air that has been heated (χNO = .001).
The reaction of interest is,

1

2
N2 +

1

2
O2 ⇀↽ NO ,

and the equilibrium constant or this equation is

Kp =
pNO

p
1
2

O2
p

1
2

N2

.

Note that for this reaction, there is no pressure dependence, since if ps = χsp is substi-
tuted for each species, the pressures cancel. First, assume that the initial mole fractions
are χN2

= .79 and χO2
= .21 and that these are constant, since χNO = .001 at the final

condition. From the tabulated value of Kp(T )[15], we find that at T = 1000 K, there
is 35 ppm of NO, and at 1500 K, there is 1320 ppm of NO from this reaction. So 1000
ppm is reached at about 1400 K. The dependence on temperature is exponential, and
at 2500 K, there would be 24000 ppm of NO, and the assumption that it is a minor
species in the mole fraction balance breaks down. However, there is another mechanism
that limits the peak NO concentration to less than this value.

The single isolated reaction considered above is not representative of air thermochem-
istry. As the temperature reaches 2000 K at 1 atm pressure the oxygen molecules begin
to dissociate by the reaction

O2 ⇀↽ 2O ,
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which has the equilibrium constant,

Kp =
p2

O

pO2

.

If this reaction is included in the analysis of the NO generation, we find that the NO
concentration peaks near 10000 ppm at a temperature of 2500 K, which is lower than
the concentration expected from the single reaction analysis alone. Including the oxygen
dissociation in the analysis also brings in a pressure dependence, since for this reaction

Kp =
p2

O

pO2

=

(

χ2
O

χO2

)

p ,

or
Kp(T )

p
=

χ2
O

1 − χO
.

Increasing pressure decreases the oxygen dissociation and this would affect the peak
value of NO.

This illustrates the difficulty involved in accurately accounting for even the equilibrium
thermochemistry of air. As temperature increases, more reactions and species must
be considered, and the bookkeeping must be carefully done. There are some common
sources of equilibrium air compositions and properties. There is the old stand-by pub-
lication, NACA TN 4265, by Moeckel and Weston, [12] and there is the CEA code
by Gordon and McBride [13]. At VKI, there is now the PEGASE library [14], which
includes equilibrium chemical composition to high temperatures.

Statistical Mechanical Derivation of Kp

To complete the analysis and relate it back to the statistical mechanical description that
has proven to be a useful way of evaluating macroscopic thermodynamic quantities, the
derivation of the law of mass action from the evaluation of the most probable macrostate
is briefly described. Consider, for example, the reaction above for oxygen dissociation
and assume that the macrocsopic quantities, energy, volume and total oxygen atom
number density, E, V,NO, are given. Then we again make arbitrary arrangements of
the groupings of energy levels, their populations, and their energies for both species
(CO2

j , NO2

j , εO2

j ;CO
j , N

O
j , ε

O
j ) and then use these quantities to find the most probable

macrostate. The assumption that the macrostate probabilities are independent of each
other is made, so that W = WO2(NO2

j )WO(NO
j ), which gives lnW = lnWO2 + lnWO.

In addition, as with the general case for a single species, the results are obtained in the
Boltzmann limit. The procedure is then to maximize lnW , subject to the constraints
that

NO = 2
∑

j

NO2

j +
∑

j

NO
j ,

and

E =
∑

j

NO2

j (εO2

j −DO2) +
∑

j

NO
j ε

O
j .
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The dissociation energy accounts for the energy in the chemical bond. The system
of equations can be solved using the method of Lagrange multipliers, and by elimin-
inating the undetermined multipliers from the results. For the case of a dissociating
homonuclear diatomic molecule, this yields

(NO)2

NO2
=

(QO)2

QO2
e−D/kT .

This is the law of mass action for a dissociating diatom, and it can be written in terms
of partial pressures for a thermally perfect gas as

p2
O

pO2

= Kp(T ) =
kT

V

(QO)2

QO2
e−D/kT ,

showing explicitly the temperature dependence mentioned above. Using this equation,
it is possible to calculate an equilibrium composition from information about the energy
levels of species. Of course, the accuracy of the approach depends on the accuracy of
the partition functions, and the simplified analytical expressions of the previous section
are not sufficient for this purpose.

Ionizing Gases - Saha Equation

To complete the description of equilibrium air thermochemistry, one should also consider
the case of an ionizing single-atom species,

O+ + e− ⇀↽ O ,

and for simplicity, only single ionization is considered. This reaction is exactly analagous
to the case of a dissociating molecule, so the law of mass action for an ionizing atom is

NO

Ne−NO+
=

QO

Qe−QO+
eI/kT .

The only difference is that the ionization energy, I, replaces the dissociation energy.
To simplify the equation, it is convenient to write the populations in terms of one
component, and this is done by noting thatNO+

= Ne−

, or that the charge in the system
is neutral. Also, the total number of O atoms is constant, so NO+

+NO = (NO)0, where
(NO)0 is the original number of O atoms in the system. Finally, a degree of ionization
is defined as

φ =
NO+

(NO)0
.

Inverting the original expression for the ionizing law of mass action and noting that
(NO)0 = ρV/mO, it can be rewritten in terms of the degree of ionization as

φ2

1 − φ
=
mO

ρV

Qe−

QO+

QO
e−θI/T .
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The characteristic ionization temperature has been defined as θI = I/k. For each of the
species, the partition functions can be written as

Qs = Qs
trans

∏

int

Qs
int .

The only internal energy for the electron is associated with its spin, which has two
degenerate states at zero energy, so Qe

int = 2. The translational partition function for
the electron is

Qe
trans = V

(

2πmekT

h2

)
3
2

.

For the ionizing specie, the masses of the ion and neutral are nearly equal, since the
only difference is in the mass of an electron, so there translational partition functions
will effectively cancel. With these relations, the expression for the degree of ionization
can be written as

φ2

1 − φ
=
mO

ρ

(

2πmekT

h2

)
3
2 2
∏

int Q
O+

int
∏

int Q
O
int

e−θI /T .

To express the equation in terms of pressure and temperature,note that

pV = (Ne− +NO +NO+

)kT = (1 + φ)kT/mO ,

and this finally give

φ2

1 − φ2
=

1

p

(

2πme

h2

)
3
2

(kT )
5
2

2
∏

int Q
O+

int
∏

int Q
O
int

e−θI /T .

Fig. 5.3 Equilibrium ionization of argon as a function of temperature and density [16].

Either of these two equations can be called the Saha equation, and there are a number
of other forms as well. However, it will usually be presented in much simpler form for
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atomic species, which have only electrical contributions to the internal energy. If excita-
tion in the ground level of the neutral and the ion are ignored, and if the temperature is
reasonable, then the partition functions are constants, and the equation can be written
as

φ2

1 − φ2
=
CT 5/2

p
e−θI/T .

Using the law of mass action, it is possible to calculate the degree of ionization for any
species as a function of temperature and pressure. This is done for argon in Fig. 5.3,
where the three curves show the degree of ionization at various pressures as a function
of temperature. Note that as pressure is decreased, the ionization fraction at constant
temperature increases.

Nonequilibrium

For situations where the gas is not in equilibrium, one can distinguish between two
different cases for both chemical and thermal nonequilibrium. The general definitions
are given below, and the parameter that determines which case applies to a given
situation for chemical nonequilibrium is the Damkohler number Da = τF /τC . A similar
nondimensional parameter can be defined for an energy transfer process, and this can
be used to assess nonequilibrium situations for thermal processes, such as vibrational
energy transfer.

Chemical Nonequilibrium: mixture composition is changing with time at a fixed location
or in space at a fixed time. Distinctions are made for three different situations:

a. Near equilibrium – Da >> 1 – small departure from equilibrium, and inconse-
quential.

b. Nonequilibrium – Da ≈ 1 – the general case where the composition is changing.
Usually, the collision rate between particles is not sufficient to complete the reac-
tions, but enough collisions are occurring that the mixture composition continues
to change.

c. Frozen – Da << 1 – the mixture composition is no longer changing because there
is not enough time to allow sufficient inter-particle collisions for reactions to go
to completion. Although the mixture composition does not change, it does not
correspond to the equilibrium mixture for the local pressure and translational tem-
perature. This can happen for example in a rapid expansion of a high-enthalpy gas,
where pressure drops so quickly that there are not enough collisions to complete
the reactions.

For thermal nonequilibrium the same situations can occur as with chemical nonequilib-
rium, and we can therefore distinguish the following situations:

a. Near equilibrium – there are sufficient collisions between particles to equilibrate
the populations in all of the energy modes at a common temperature.

b. Nonequilibrium – the energy distribution is changing or evolving and the collisions
are not sufficient to reach equilibrium, but are frequent enough to continue to
transfer energy between modes.

c. Frozen – the energy distributions in each mode do not correspond to a single
temperature, and the distributions of particles over the available energy levels can
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be non-Boltzmann. We usually assume that they are still Boltzmann, although
at different temperatures. This allows modeling of only the total species and the
transfer processes without having to model separately the populations in each
energy level (which is actually required).

Note that if the composition is frozen, it can be assumed to have a constant value of
entropy from that point on, and this has been used to model frozen flow in nozzles under
very high expansion ratios with some success.

The issue of nonequilibrium is particularly important for ground testing in facilities that
attempt to duplicate hypersonic flight conditions. As the simulation is not perfect, the
ability to interpret test results and to relate them to flight is made even more difficult
by the inability to directly measure test conditions other than by spectroscopic means.
Even with these approaches, the assumption of thermochemical equilibrium is often
invoked to simplify the analysis. In the past, many different types of facility have been
developed for hypersonic and high-enthalpy flow testing, and these are shown in a rather
crude fashion in Fig. 5.4, where the range of characteristic flow time relative to chemical
time is shown. Note that the continuous flow facilities do not cover much of this domain.

Fig. 5.4 Hypersonic ground test facilities.[3]

Recall that the total enthalpy can be considered constant, thus the stagnation temper-
ature shown on the y axis is a measure of the total stagnation enthalpy of the facilities,
and the larger values correspond to the requirement to simulate higher flight speeds
(recall that h0 ≈ u2/2).

6. Summary

Some of the basic principles of hypersonic flow have been presented in these lecture
notes. Following a general description of the characteristic features of hypersonic flight,
the basic thermodynamic and fluid dynamic considerations were reviewed for perfect
gases and for imperfect gases, with particular attention to caloric imperfection. A statis-
tical mechanics approach was used to derive analytic expressions for the thermodynamic
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property variation of calorically imperfect gases. Concepts of equilibrium thermochem-
istry were then presented, with particular attention given to the case of a dissociating
diatom and an ionizing atom. This was followed by a brief description of nonequilibrium
flow situations.
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